USN

Sixth Semester B.E. Degree Examination, June/July 2014 Compiler Design

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Draw diagram for language processing system.

(04 Marks)

b. Explain general structure of a compiler.

(08 Marks)

c. Write an algorithm for "look ahead code with sentinels".

(04 Marks)

d. Draw a transition diagram for identifiers and keywords. How do you handle reserve words that look like identifiers? (04 Marks)

2 a. For the following grammar

$$S \rightarrow (L) \mid a$$

 $L \rightarrow L, S \mid S$

Make necessary changes to make it suitable for LL(1) parser.

(02 Marks)

- b. After doing necessary changes in Q2(a) grammar check whether it is LL(1) grammar or not. If yes, parse the string (a, a). (10 Marks)
- c. List all error recovery methods in LL(1) parser. Explain one method suitable for the grammar given below.

$$S \rightarrow AbS \mid e \mid \in$$

 $A \rightarrow a \mid cAd$ string is "ceadb" (08 Marks)

- 3 a. What is a shift reduce parser? Explain the conflict that may occur during shift reduce parsing.

 (04 Marks)
 - b. What is handle pruning? Explain with the help of the grammar S →SS + | SS* | a and input string aaa*a++.
 (08 Marks)
 - c. Give Bottom-up parsing for the strings 000111 and grammar S → OS1 | 01 and construct parse tree in each step of deviation.
 (08 Marks)
- 4 a. Write algorithm for construction of canonical LR(1) parsing table. (10 Marks)
 - b. Construct LALR parsing tables for the grammar shown below using LR(1) items.

$$S \rightarrow CC$$

 $C \rightarrow c C \mid d$ (10 Marks)

<u>PART – B</u>

5 a. Write a SDD for desktop calculator.

- (04 Marks)
- b. Assume suitable SDD to construct a syntax tree for the expression a-4+c and what are the steps involved in construction of that syntax tree. (08 Marks)
- c. Construct annotated parse tree for 3*5 and write dependency graph for the constructed parse tree. (08 Marks)

- 6 a. List various 3 address instruction forms. Give one example for each. (10 Marks)
 - b. Construct DAG for the expression

$$(x + y) - ((x + y) * (x - y))) + ((x + y) * (x - y))$$
 (06 Marks)

- c. Write case 3 address code instructions used to translate a switch statement. (04 Marks)
- 7 a. Discuss about the various components and their use in an activation record. (08 Marks)
 - b. What do you mean by calling sequence? Explain the actions performed during
 - (i) function call (ii) return. (08 Marks)
 - c. Draw subdivision of run-time memory into code and data areas. (04 Marks)
- 8 a. For the following program segment generate intermediate code and flowgraph of that code.

$$a[i, j] = 0.0;$$

for i from 1 to 10 do

$$a[i, i] = 1.0;$$
 (10 Marks)

b. What are the steps involved in optimization of Basic blocks. Explain any 2 steps.

(10 Marks)

2 of 2